Il monitoraggio del gas Radon, sull’Etna, funziona!

0

Gas pulse, rock fracturing e sloshing. Sono i processi che influenzano la presenza del gas Radon rilevato dalla stazione di monitoraggio situata in prossimità della cima dell’Etna e che aiutano a comprendere come funziona il vulcano. Lo studio, firmato INGV, è stato pubblicato su Geochemistry, Geophysics, Geosystems dell’American Geophysical Union
comunicazione.ingv.it

Il gas Radon funziona come tracciante dell’attività eruttiva e in qualche caso anche tettonica. A dimostrarlo uno studio condotto dall’Istituto Nazionale di Geofisica e Vulcanologia (INGV) sezione di Catania-Osservatorio Etneo, appena pubblicato su Geochemistry, Geophysics, Geosystems dell’American Geophysical Union (http://onlinelibrary.wiley.com/doi/10.1002/2017GC006825/abstract).

L’Etna è uno dei vulcani più attivi al mondo. Erutta con frequenza elevata, soprattutto nel corso degli ultimi decenni, e cambia aspetto con rapidità. Essendo un vulcano in larga parte antropizzato, il suo monitoraggio ha un’alta valenza sociale. La fitta rete di strade, facilmente percorribili fino alle quote più elevate, consente di accedere alla sommità in tempi brevi. E’ anche per questo che l’Etna rappresenta un formidabile laboratorio naturale a cielo aperto, dove gli scienziati possono installare e testare reti di strumenti di monitoraggio e sorveglianza sempre più fitte, sofisticate ed efficienti.

Radon 1

Foto 1 – Vista da elicottero dell’alto fianco orientale dell’Etna, ripresa da sud-est. La sonda Radon utilizzata nell’articolo è situata a circa 1 km di distanza dall’area craterica sommitale ed a circa 2 km dalla fessura eruttiva del 2008-2009. Foto di M. Neri.

Negli ultimi anni, all’Etna si analizza anche il gas Radon. Un gas radioattivo naturale che proviene dal sottosuolo, da alcuni considerato un precursore di terremoti, anche se con molti distinguo, dubbi e scetticismi da parte della comunità scientifica.

“Il Radon all’Etna funziona come tracciante dell’attività eruttiva e, in qualche caso, anche di quella tettonica” spiega Marco Neri, primo ricercatore dell’INGV-Osservatorio Etneo (INGV-OE).

Ma, per capire davvero i fenomeni tettonici, occorre confrontare il Radon con i molti altri dati che sono giornalmente prodotti dalle reti strumentali dell’INGV-OE, potenziate in circa quarant’anni di attività di monitoraggio e sorveglianza.

“È stato analizzato un periodo di attività vulcanica dell’Etna vivace e varia, compreso tra gennaio 2008 e luglio 2009. Diciannove mesi nei quali il vulcano ha prodotto alcuni sciami sismici, fratturazioni superficiali del suolo, una vigorosa fontana di lava e, infine, una lunga eruzione durata ben 419 giorni”, prosegue Susanna Falsaperla, primo ricercatore dell’INGV-OE e primo autore della pubblicazione.

Abbastanza per mettere alla prova la significatività del Radon rilevato da una stazione situata in prossimità della cima dell’Etna, a circa 3000 metri di quota, in una località un tempo nota col nome di “Torre del Filosofo” e ora sepolta sotto metri e metri di colate laviche che dal 2013 a oggi hanno completamente mutato la fisionomia di quei luoghi.

Radon 2

Foto 2 – Stazione di misura dei dati Radon collocata nel sito di Torre del Filosofo (fianco Sud dell’Etna, quota 3000 circa). Sullo sfondo si nota la contemporanea attività eruttiva a circa 1 km di distanza dalla stazione di monitoraggio. Foto di M. Neri.

“Si è scoperto che il Radon di quella stazione di monitoraggio è influenzato essenzialmente da due processi. Il primo, è legato alla risalita dei magmi nel condotto centrale del vulcano. Questo processo avviene attraverso “pulsazioni” di gas, cioè incrementi del Radon brevi e intensi, che gli studiosi definiscono, in lingua inglese, gas pulse. Il secondo è indotto dalla fratturazione della roccia (rock fracturing), quando la stessa roccia si rompe a causa di un terremoto o di uno sciame sismico”, prosegue Neri.

I risultati dello studio hanno inoltre evidenziato che la sonda Radon è “sensibile” perfino a terremoti di entità relativamente piccola e che avvengono a parecchi chilometri di distanza da essa. Ciò può essere spiegato attraverso un fenomeno che gli inglesi chiamano sloshing, e che significa letteralmente “sciabordare”.

“Lo scuotimento della roccia, indotto da uno sciame sismico”, afferma Falsaperla, “può provocare un movimento oscillatorio nella falda freatica e nei fluidi magmatici contenuti all’interno del vulcano, i cui effetti si possono irradiare, quindi, ad una distanza ben maggiore di quanto comunemente immaginato”.

L’Etna è perennemente in un equilibrio precario: anche un fenomeno piccolo che accade, ad esempio, sul fianco nord dell’Etna, può fare sentire i suoi effetti sul versante opposto. Quasi come un “effetto farfalla”.

Abstract

We analyze short- to long-term changes (from days to months) in Radon (Rn) activity measured nearby (<2 km) the eruptive fractures that fed a lava effusion at Mt. Etna, Italy, between 13 May 2008 and 6 July 2009. The N120-140°E eruptive fractures opened between 3050 and 2620 m above sea level before a dike-forming intrusion fed the ∼14 month-long lava emission. Our high-rate data streams include: Rn, ambient parameters (barometric pressure and soil temperature), and seismic data (earthquakes and volcanic tremor) recorded from January 2008 to July 2009. The analysis highlights repeated episodes of rock-fracturing related to seismic swarms, and vigorous gas pulses and peak values in Rn emissions (maximum ∼4.1×105 Bq/m3 on 16 November 2008), which we interpreted in a conceptual model as the response to inputs from the magmatic system during the eruption. This multidisciplinary study: (i) provides evidence of a close relationship between Rn emission at a fumarole near the summit active craters and local earthquakes, and (ii) enables exploring the important role of the volcanic source on the temporal development of the Rn flux, which may account for the much higher (≫94 m/d) ascent speed of the Rn carrier (vapor) than diffusion. The close location of Rn probes to the active conduits, along with the application of our multidisciplinary approach, may shed new light on the internal dynamics of other active volcanoes worldwide.
Citazione bibliografica:

Falsaperla, S., M. Neri, G. Di Grazia, H. Langer, and S. Spampinato (2017), What happens to in-soil Radon activity during a long-lasting eruption? Insights from Etna by multidisciplinary data analysis, Geochem. Geophys. Geosyst., 18, 5, 1-15, doi:10.1002/2017GC006825.

Share.

Leave A Reply